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Figure 1—Through-wall Capture of the Human Figure. The sensor is placed behind a wall. It emits low-power radio signals. The signals traverse the
wall and reflect off different objects in the environment, including the human body. Due to the physics of radio reflections, at every point in time, the sensor
captures signal reflections from only a subset of the human body parts. We capture the human figure by analyzing multiple reflection snapshots across time
and combining their information to recover the various limbs of the human body.

Abstract
We present RF-Capture, a system that captures the human figure
– i.e., a coarse skeleton – through a wall. RF-Capture tracks the
3D positions of a person’s limbs and body parts even when the per-
son is fully occluded from its sensor, and does so without placing
any markers on the subject’s body. In designing RF-Capture, we
built on recent advances in wireless research, which have shown
that certain radio frequency (RF) signals can traverse walls and re-
flect off the human body, allowing for the detection of human mo-
tion through walls. In contrast to these past systems which abstract
the entire human body as a single point and find the overall location
of that point through walls, we show how we can reconstruct var-
ious human body parts and stitch them together to capture the hu-
man figure. We built a prototype of RF-Capture and tested it on 15
subjects. Our results show that the system can capture a represen-
tative human figure through walls and use it to distinguish between
various users.
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1 Introduction
Capturing the skeleton of a human body, even with coarse precision,
enables many applications in computer graphics, ubiquitous com-
puting, surveillance, and user interaction. For example, solutions
such as the Kinect allow a user to control smart appliances without
touching any hardware through simple gestures, and can customize
their behavior by recognizing the identity of the person. Past work
on skeletal acquisition has made significant advances in improv-
ing precision; however, all existing solutions require the subject to
either carry sensors on his/her body (e.g., IMUs, cameras) or be
within the line of sight of an external sensor (e.g., structured light,
time of flight, markers+cameras). In contrast, in this paper, we fo-
cus on capturing the human figure – i.e., coarse human skeleton –
but without asking the subject to wear any sensor, and even if the
person is behind a wall.

To achieve this goal, we build on recent advances in wireless re-
search, which have shown that RF (Radio Frequency) signals can
be used to find the location of a person from behind a wall, without
requiring the person to hold or wear any device [Adib et al. 2014;
Seifeldin et al. 2013; Nannuru et al. 2013; Bocca et al. 2013]. These
systems operate in a fashion similar to Radar and Sonar, albeit at
much lower power. They emit wireless signals at very low power
(1/1000 of WiFi) in a frequency range that can traverse walls; the
signals reflect off various objects in the environment, including the
human body, and they use these reflections to localize the person
at any point in time. However, all past systems capture very lim-
ited information about the human body. Specifically, either they
abstract the whole human body as a single-point reflector, which
they track [Adib et al. 2014; Adib and Katabi 2013; Seifeldin et al.
2013; Nannuru et al. 2013], or they classify a handful of forward-
backward gestures by matching them against prior training exam-
ples [Pu et al. 2013].

The challenge in using RF to capture a human figure is that not
all body parts reflect the signal back to the sensors. Specifically,
at frequency ranges that traverse walls, human limb curves act as
ideal reflectors; hence, they may deflect the signal away from the



sensors rather than back to them. (This is because RF signals that
traverse walls have a wavelength of multiple centimeters, which is
larger than the surface roughness of human body parts, causing each
part to act as a perfect reflector [Beckmann and Spizzichino 1987].)
At every point in time, the RF sensors capture signals from only
a subset of the human body parts, and the sensors lack semantics
to understand which body part is reflecting the signal back at that
instant. Furthermore, as a person moves, the reflecting limbs vary;
for example, at some point, a person’s left hand may reflect the
signal back but not his right hand or his head, while at other times,
his head may reflect the signal back but neither of his hands. To
overcome this challenge, past systems that use radar techniques to
reconstruct a skeleton require surrounding the human body with a
very large antenna array that can capture the reflections off his/her
body parts, similar to holographic systems deployed in airports.

In this paper, we limit ourselves to a compact antenna array that
sits in a corner of a room – like a Kinect sensor – and captures the
figure of a person behind a wall, as shown in Fig. 1. We present RF-
Capture, the first system that can capture the human figure when the
person is fully occluded (i.e., in the absence of any path for visible
light). RF-Capture has two main algorithmic components: The first
component is a coarse-to-fine algorithm that efficiently scans 3D
space looking for RF reflections of various human limbs and gen-
erating 3D snapshots of those reflections. The second component
exploits the fact that due to human motion, consecutive RF snap-
shots tend to expose different body parts and diverse perspectives
of the same body part. Thus, this component introduces an algo-
rithm that identifies human body parts from RF snapshots across
time, and stitches multiple snapshots together to capture the human
figure.

We leverage the captured figure to deliver novel capabilities. First,
we show how the captured figure can be incorporated into a classi-
fier to identify different subjects from behind a wall. Our classifi-
cation accuracy is 95.7% when distinguishing between 5 users, and
becomes 88.2% for 15 users. Second, we show that RF-Capture
can identify which body part a user moves through a wall with an
accuracy of 99.13% when the user is 3 m away and 76.4% when
the user is 8 m away. Finally, we show that RF-Capture can track
the palm of a user to within a couple of centimeters, tracing letters
that the user writes in the air from behind a wall.

We believe the above results present a significant leap towards hu-
man figure capture through walls and full occlusion. However, the
current system still has limitations. First, our current model as-
sumes that the subject of interest starts by walking towards the de-
vice, hence allowing RF-Capture to capture consecutive RF snap-
shots that expose various body parts. Second, while the system
can track individual body parts facing the device, such as a palm
writing in the air, it cannot perform full skeletal tracking. This is
because not all body parts appear in all RF snapshots. We believe
these limitations can be addressed as our understanding of wireless
reflections in the context of computer graphics and vision evolves.

2 Related Work
Motion Capture Systems. Past work for capturing the human
skeleton relied on motion capture systems that either require in-
strumenting the human body with markers or operate only in di-
rect line-of-sight to the human body. Specifically, marker-based
methods place various types of sensors on the human body – in-
cluding inertial, infrared, RF, acoustic, or ultrasonic sensors –
and capture the human skeleton by tracking these various mark-
ers, e.g., [Roetenberg et al. 2009; Vlasic et al. 2007; Wang et al.
2014a; Raskar et al. 2007; VIC ; Zeb ]. On the other hand, past
markerless methods use cameras and infrared-based techniques –
including Kinect, multi-view cameras, moving cameras, and time-

of-flight cameras – and require a direct line-of-sight from the sen-
sor to the person’s body, e.g., [Shotton et al. 2013; Ganapathi et al.
2010; Hasler et al. 2009b; Gall et al. 2009; Vlasic et al. 2008; Poppe
2007; Ye et al. 2014]. In contrast to all this past work, RF-Capture
focuses on capturing coarse human figures without instrumenting
the human body with any markers and operates correctly even if
the subject is behind a wall or furniture.

Prior art has also investigated motion capture in partial occlusions,
e.g., [Li et al. 2010; Herda et al. 2000; Liu and McMillan 2006;
Park and Hodgins 2006; Chai and Hodgins 2005; Wang et al. 2008].
However, these systems require the majority of the human body to
be unoccluded from their sensors, and focus on estimating the po-
sitions of occluded limbs or missing markers by fitting a model.
In contrast, since RF-Capture uses RF signals that can traverse oc-
clusions, it works even when the person is fully occluded from its
sensor, including scenarios where the subject is behind a wall.

Imaging and Reconstruction Algorithms. RF-Capture is related
to past work on imaging hidden shapes using light that bounces
off corner reflectors in the scene [Velten et al. 2012; Kirmani et al.
2009; Heide et al. 2014]. These past systems operate by estimat-
ing the time-of-flight of the object’s reflections bouncing off the
corner. RF-Capture’s reconstruction problem is closely related to
such transient imaging techniques; this is because by pointing a
time-resolved camera onto a white patch of a wall, that wall essen-
tially becomes a lens-less image sensor with distance information.
However, the reconstruction constraints – both in terms of band-
width and number of sensors – are more stringent in the case of
RF-Capture, which limits itself to 20 antennas and less than 2 GHz
of bandwidth (while cameras use thousands of pixels and light has
hundreds of THz of bandwidth). This allows these transient imag-
ing techniques to achieve higher reconstruction accuracy. Further-
more, in contrast to these systems, RF-Capture only captures spec-
ular reflections because of the wavelength of RF signals it uses.
However, because it uses RF signals that can traverse occlusions,
RF-Capture does not require the placement of corner reflectors in
the environment. Furthermore, unlike this past work, it does not re-
quire the hidden shape to be fully static during the acquisition time,
and hence is evaluated on real human subjects.

Additionally, RF-Capture is related to past work in the Graphics
and Vision community on specular object reconstruction [Liu et al.
2014; Ihrke et al. 2010]. Specifically, for frequencies that tra-
verse walls, reflections off the human body have specular proper-
ties. However, past work on specular reconstruction, which oper-
ates using visible light, typically assumes the object to be static and
non-deformable and aims at recovering surface geometry. In con-
trast, in RF-Capture, the setting is more complex since the object is
moving and deformable, but the goal is simpler since we intend to
recover a coarse figure as opposed to surface geometry.

Radar Systems. Radar systems were the first to use RF reflections
to detect and track objects. The vast majority of the radar litera-
ture focuses on inanimate objects (e.g., planes, metallic structures),
as opposed to humans. The radar literature that deals with human
subjects can be classified into two categories. The first category
is high-frequency imaging radar using terahertz [Woodward et al.
2002], laser [Allen et al. 2003], or millimeter and sub-millimeter
waves [Cooper et al. 2008; Dengler et al. 2007; Appleby and An-
derton 2007]. These systems are intrinsically different from ours
since they operate at much higher frequencies, where the wave-
length is comparable to the roughness of the surface, and hence the
human body becomes a scatterer as opposed to a reflector [Beck-
mann and Spizzichino 1987]. The advantage of these systems is
that they can image the human skeleton at a high accuracy (as in
airport terahertz security scanners). However, they operate at much
shorter distances, cannot deal with occlusions like wall or furniture,



and are expensive and bulky.

The second category uses centimeter-waves, i.e., its carrier fre-
quency is around few GHz, similar to our system. These systems
have significantly lower resolution than our design. In particular,
see-through radar estimates the location of a human but does not
reconstruct his/her figure [Ralston et al. 2010; Charvat et al. 2010;
Jia et al. 2013; Xu et al. 2012; Le et al. 2009; Dogaru and Le
2008]. This includes commercial products, like Xaver-100, Xaver-
400, Xaver-800, and Range-R [Huffman et al. 2014]. Unlike RF-
Capture, these systems cannot track individual limbs or construct
a human figure. On the other hand, the few systems that aim to
reconstruct the human body demonstrate their results on a doll cov-
ered with foil and require an antenna array larger than the imaged
object [Zhuge et al. 2008]. In comparison to these systems, RF-
Capture provides finer resolution, and allows capturing human fig-
ures with a granularity that is sufficient for distinguishing between
a set of 15 people. Also, RF-Capture limits itself to a compact ar-
ray about twice the size of a Kinect, as opposed to a large array
that is of the size of the human body. In addition, unlike commer-
cial products that target the military [Huffman et al. 2014], which
use restricted frequency bands and transmission powers only avail-
able to military and law enforcement, RF-Capture meets the FCC
regulations for consumer devices.

Finally, RF-Capture’s coarse-to-fine algorithm is inspired by radar
lock and track systems of military aircraft, which first identify
a coarse location of a target then zoom on its location to track
it [Forbes 2013]. In contrast to these systems, however, RF-Capture
does not separate searching from tracking into different phases at
signal acquisition. Additionally, RF-Capture’s goal of reconstruct-
ing a human figure differs from these past systems, resulting in dif-
ferences in the underlying algorithms.

Device-Free Localization and Gesture Recognition. Advances
in RF-based indoor localization have led to new systems that can
track users without requiring them to carry a wireless transmitter,
e.g., [Adib et al. 2014; Joshi et al. 2015; Adib and Katabi 2013;
Wang et al. 2014b; Pu et al. 2013; Abdelnasser et al. 2015; Chetty
et al. 2012; Wilson and Patwari 2011; Youssef et al. 2007; Nan-
nuru et al. 2013; Seifeldin et al. 2013; Adib et al. 2015]. Some of
these systems have demonstrated the potential of using RF signals
to recognize a handful of forward-backward gestures by matching
them against prior training examples [Pu et al. 2013]. Others have
demonstrated using narrowband RF signals to map major obstacles
and building interiors through walls [Depatla et al. 2015; Mostofi
2012; Gonzalez-Ruiz et al. 2014]. RF-Capture builds on this liter-
ature but extracts finer-grain information from RF signals. In par-
ticular, it is the only system that can identify which human limb
reflects the signal at any time. It is also the only system that can
combine those limbs to generate a human figure from behind a wall.

3 Primer
(a) Phase of RF signals: An RF signal is a wave whose phase is
a linear function of the traveled distance. By sampling the signal,
we can record both its amplitude and its phase. The sampled sig-
nal can be represented as a complex discrete function of time t as
follows [Tse and Vishwanath 2005]:

st = Ate−j2π r
λ

t, (1)
where r is the distance traveled by the signal, λ is its wavelength,
and A is its amplitude.

(b) Antenna Arrays: Antenna arrays can be used to identify the
spatial direction from which the RF signal arrives. This process
leverages the knowledge of the phase of the received signals to
beamform in post-processing as shown in Fig. 2(a). Mathemati-
cally, an N-element antenna array can compute the power P of sig-
nals arriving along the direction θ as follows [Orfanidis 2002]:
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Figure 2—Measuring Location with RF Signals. (a) Antenna arrays can
be used to focus on signals from a specific direction θ. (b) FMCW chirps
can be used to obtain time-of-flight (i.e., depth) measurements.

P(θ) =

∣∣∣∣∣
N∑

n=1

snej2π nd cos θ
λ

∣∣∣∣∣ , (2)

where sn is the wireless signal received at the n-th antenna, d is the
separation between any two antennas, and λ is the wavelength of
the RF signal.

Furthermore, the larger an antenna array is, the stronger its focusing
capability is. Specifically, an array of length L has a resolution
∆θ = 0.886λ

L [Orfanidis 2002].

(c) FMCW Frequency Chirps: Frequency Modulated Carrier
Wave (FMCW) is a technique that allows a radio device to mea-
sure the depth of an RF reflector. An FMCW device transmits a
frequency chirp –i.e., a periodic RF signal whose frequency lin-
early increases in time, as shown in Fig. 2(b). The chirp reflects off
objects in the environment and travels back to the device after the
time-of-flight. The device can measure the time-of-flight and use it
to infer the depth of the reflector. To do so, the device leverages the
linear relationship between time and frequency in chirps. Specif-
ically, it measures the time-of-flight (and its associated depth) by
measuring the frequency shift between the transmitted and received
signal. Mathematically, a frequency chirp of slope k can be used to
compute the signal power P emanating from a particular depth r as
follows [Mahafza 2013]:

P(r) =

∣∣∣∣∣
T∑

t=1

stej2π kr
c t

∣∣∣∣∣ , (3)

where st is the baseband time signal, c is the speed of light, and the
summation is over the duration T of each chirp.

Furthermore, by increasing the bandwidth of the chirp signal, one
can achieve finer depth resolution. Specifically, a frequency chirp
of bandwidth B has a depth resolution ∆r = c

2B [Mahafza 2013].

(d) Eliminating Static Reflectors: To capture the human figure,
we first need to separate human reflections from the reflections of
other objects in the environment (e.g., walls and furniture). To do
so, we use standard background subtraction, where subtraction is
performed in the complex domain since an RF signal is a sequence
of complex numbers (with magnitude and phase). Specifically, re-
flections of static objects remain constant over time and can be
eliminated by subtraction. Hence, we collect the reflections of static
objects before any human enters the room and subtract them from
the received chirps at later times. Of course, this requires knowing
whether there are humans in the room or not, which we achieve by
leveraging past work on RF-based device-free localization which
accurately detects and localizes humans [Adib et al. 2014].

4 RF-Capture Overview
The device: RF-Capture is a system that captures the human fig-
ure – i.e., a coarse human skeleton – through walls. It operates
by transmitting low-power RF signals (1/1000 the power of WiFi),
capturing their reflections off different objects in the environment,
and processing these reflections to capture the human figure. RF-
Capture’s prototype consists of a T-shaped antenna array, as shown
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Figure 3—RF Reflections. (a) Only signals that fall along the normal to the surface are reflected back toward the device. (b) The human body has a complex
surface, but at any point in time only signals close to the normal to the surface are reflected back toward the device. (c) As the person walks, different body
parts reflect signals toward the device and become visible to the device.

in Fig. 1. The vertical segment of the “T” consists of transmit an-
tennas and the horizontal segment of the “T” consists of receive an-
tennas. The antennas are connected to an FMCW transceiver which
time-multiplexes its transmission between the different transmit an-
tennas, and which can be operated from a computer using a USB
cable. The total size of the antenna array is 60×18 cm2.

In contrast to typical techniques for imaging humans such as visible
light, x-ray, terahertz, and millimeter-wave, RF-Capture operates
at lower frequencies between 5.46GHz and 7.24GHz. The advan-
tage of operating at such relatively low RF frequencies is that they
traverse walls. Additionally, operating at these frequencies allows
us to leverage the low-cost massively-produced RF components in
those ranges.

The challenge: The key challenge with operating at this frequency
range (5-7GHz) is that the human body acts as a reflector rather
than a scatterer. As a result, at any point in time, our antenna ar-
ray can capture only a subset of the RF reflections off the human
body. To see why this is the case, consider the simplified example
in Fig. 3(a). Recall the basic reflection law: reflection angle is equal
to the angle of incidence. Thus, while an antenna array can trans-
mit signals towards the reflecting body, only signals that fall close
to the normal to the surface are reflected back toward the array.
In contrast, signals that deviate from the normal to the surface are
deflected away from our array, making those parts of the reflector
invisible to our device. The human body has a much more complex
surface; however the same principle still applies, as illustrated in
Fig. 3(b).

The solution idea: Our solution to the above problem exploits user
motion to capture his figure. Specifically, while the antenna array
receives reflections only from very few points on the user’s surface,
these points vary as the person moves, and trace the person’s body.
Fig. 3(b) and (c) illustrate this concept. The figures show that as
the person walks, the relation between the incident signal and the
normal to the surface for his various body parts naturally changes,
providing opportunities for capturing the signals reflected from var-
ious body parts. Hence, we could capture the instantaneous RF re-
flections over consecutive time frames, relate them to each other to
identify which reflections are coming from which body part, and
combine their information across time and motion to capture the
human figure.

In order to transform the above idea into a practical system, we need
a design that satisfies two requirements: on one hand, the system
needs to achieve spatial resolution sufficient for constructing the
human figure; on the other hand, the system should process the
signals in real-time at the speed of its acquisition (as in Kinect).

The design of RF-Capture harnesses the above idea while satisfy-
ing our design requirements. Specifically, the system has two key
components:

• Coarse-to-fine 3D Scan: This component generates 3D snap-
shots of RF reflections by combining antenna arrays with FMCW
chirps. A key consideration in designing this algorithm is to en-
sure low computational complexity. Specifically, directly scanning
each point in 3D space to collect its reflections is computationally
intractable. Thus, this component introduces a coarse-to-fine al-
gorithm that starts by scanning 3D reflections at coarse resolution,
then zooms in on volumes with high power and recursively refines
their reflections. The implementation of this algorithm is based
on computing FFTs which allows it to achieve low computational
complexity.
• Motion-Based Figure Capture: This component synthesizes con-
secutive reflection snapshots to capture the human figure. It oper-
ates by segmenting the reflections according to the reflecting body
part, aligning them across snapshots while accounting for motion,
and then stitching them together to capture the human figure. In §9,
we demonstrate that this approach can deliver a spatial resolution
sufficient for capturing the human figure and its limbs through walls
and occlusions.

Next, we describe these components in detail.

5 Coarse-to-Fine 3D Scan
RF-Capture uses a combination of a 2D antenna array and FMCW
chirps to scan the surrounding 3D space for RF reflections. How-
ever, since much of the 3D space is empty, it would be highly in-
efficient to scan every point in space. Thus, RF-Capture uses a
coarse-to-fine algorithm that first performs a coarse resolution scan
to identify 3D regions with large reflection power. It then recur-
sively zooms in on regions with large reflected power to refine its
scan. Below, we explain how this coarse-to-fine scan can be inte-
grated with the operation of antenna arrays and FMCW.

Each voxel in 3D space can be uniquely identified by its spherical
coordinates (r, θ,φ) as shown in Fig. 4. By projecting the received
signals on θ and φ using the 2D antenna array and on r using the
frequency chirp, we can measure the power from a particular 3D
voxel. Mathematically, the power arriving from a voxel (r, θ,φ)
can be computed as:

P(r, θ,φ) =

∣∣∣∣∣
M∑

m=1

N∑
n=1

T∑
t=1

sn,m,tej2π kr
c tej 2π

λ
sin θ(nd cos φ+md sin φ)

∣∣∣∣∣ ,
(4)

where N is the number of receive antennas, and M is the number
of transmit antennas, and sn,m,t is the signal received by receive an-
tenna n from transmit antenna m at time t.

Equation 4 shows that the algorithmic complexity for computing
the reflection power is cubic for every single 3D voxel. Thus, we
want to minimize the number of 3D voxels that we scan while main-
taining high resolution of the final 3D reflection snapshot. To do so,
we refine the resolution of our antenna array and FMCW chirps re-
cursively as described below.
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Figure 4—Scanning. A 2D antenna array with FMCW ranging can focus
on any (r, θ,φ) voxel in 3D.
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Figure 5—Coarse-to-Fine Angular Scan. We start by using a small num-
ber of antennas which gives us a wide beam and coarse angular resolution.
Then, we refine our estimate by using more antennas to achieve a narrower
beam and finer resolution, but use that beam only to scan regions of interest.

Coarse-to-Fine Angular Scan: RF-Capture exploits an intrinsic
property of antenna arrays, namely: the larger an array is, the
narrower its beam, and the finer its spatial resolution. Thus, RF-
Capture starts with a small array of few antennas, and uses more
antennas only to refine regions that exhibit high reflection power.
Fig. 5 illustrates this design. The figure uses a 1D array for clarity.
In the first iteration of the algorithm, RF-Capture computes power
using signals from only the two middle antennas of the array, while
ignoring the signal from the other antennas. This results in a small
aperture, and hence a very wide beam. Using this wide beam, RF-
Capture localizes the person to a wide cone as shown by the red
region in Fig. 5(a). In the next iteration, it incorporates two more
antennas in the array. However, in this iteration, it does not need to
scan the entire angular space, but rather only the space where it had
detected a person in the previous iteration (i.e., the red region in
Fig. 5(a)). The algorithm proceeds in the same manner until it has
incorporated all the antennas in the array and used them to compute
the finest possible direction as shown in Fig. 5(b).

While the above description uses a 1D array for illustration, the
same argument applies to 2D arrays. In particular, our 2D array
has a T-shape. Thus, in each iteration, we refine the resolution by
including an extra antenna from the vertical segment and two an-
tennas from the horizontal segment.

Coarse-to-Fine Depth Scan: Recall that the depth resolution of
FMCW is inversely proportional to the bandwidth of the signal
(see §3(c)). Hence, RF-Capture can recursively refine its depth fo-
cusing by gradually increasing the amount of bandwidth it uses.

Specifically, it starts by using a small chunk of its bandwidth, which
would result in very coarse resolution as shown in Fig. 6(a). It
then localizes the person to a wide spherical ring. In the following
iteration, it uses a larger amount of bandwidth but scans only the
spherical ring where it identified the reflector. It proceeds iteratively
until it has used all of its bandwidth, as shown in Fig. 6(b).

But, what does it mean for us to iteratively increase the bandwidth?
Similar to our antenna array iterative approach, we still collect all
the data, but process it selectively. Specifically, recall that a fre-
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Scanned%
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(a) Coarse Estimate (c) Finest Estimate

Figure 6—Coarse-to-Fine Depth Scan. We start by using a small chunk
of bandwidth which gives us coarse depth resolution. Then, we refine our
estimate by adding more bandwidth to achieve finer resolution, but use that
bandwidth only to scan regions of interest.
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Figure 7—Coarse-to-Fine 3D Scan. We can partition and iterate jointly
using chirps and antenna arrays. In any given iteration, we only scan the
small region identified by the previous iteration.

quency chirp consists of a signal whose frequency linearly increases
over a sweep as shown in Fig. 2(b). Whereas all the samples of a
sweep collectively cover the entire bandwidth, a subset of those
samples covers a subset of the sweep’s bandwidth. Similar to iter-
atively adding more antennas to our processing, RF-Capture itera-
tively adds chirp samples to achieve finer depth resolution.

Additional Points: A few points are worth noting:
• RF-Capture performs the above iterative refinement in both
FMCW bandwidth and antenna arrays simultaneously as shown in
Fig. 7.
• Standard antenna array equations (as described in §3(b) and
Fig. 2(a)) rely on an approximation which assumes that the signals
received by the different antennas are all parallel. To improve the
final accuracy of reconstruction and achieve higher focusing capa-
bilities, we use a more complex model in the final iteration of the
coarse-to-fine algorithm [Richards 2005]. Specifically, the power
from an (x, y, z) voxel in 3D space can be expressed as a function of
the round-trip distances r(n,m)(x, y, z) to each transmit-receive pair
(m, n) as follows:1

P(x, y, z) =

∣∣∣∣∣
M∑

m=1

N∑
n=1

T∑
t=1

sn,m,tej2π
kr(n,m)(x,y,z)

c tej2π
r(n,m)(x,y,z)

λ

∣∣∣∣∣ (5)

• Finally, the coarse-to-fine algorithm (in our current implementa-
tion) allows RF-Capture to generate one 3D snapshot (a 3D frame)
of the reflection power every 75ms on Nvidia Quadro K4200 GPU.
This represents a speedup of 160, 000× over a standard non-linear
projection of Eq. 5 which requires on average 200 minutes for ren-
dering a single time snapshot on the same GPU platform. Further-
more, because the switched antenna array has a signal acquisition

1The inverse square law is implicit in sn,m,t and doesn’t need to be in-
verted in the phased array formulation. This is a standard approximation in
antenna arrays since the phase varies by 2π every wavelength, which is a
much bigger effect than changes in amplitude. Accounting for the minute
variations in amplitude can produce minor sidelobe reductions, but is often
negligible [Richards 2005].



time of 80ms, the 75 ms rendering time allows RF-Capture to gen-
erate a new 3D snapshot within the same signal acquisition period.
In addition, it results in a frame rate that is sufficient to continu-
ously track human motion across time. Being able to assume that
reflecting bodies smoothly move across a sequence of 3D frames is
important for identifying human body parts and tracking them, as
we explain in the next section.

6 Motion-based Figure Capture
Now that we have captured 3D snapshots of radio reflections of var-
ious human body parts, we need to combine the information across
consecutive snapshots to capture the human figure. This process
involves the following four steps:

1. Compensation for Depth: Since RF-Capture collects 3D snap-
shots as the user moves, the subject’s body is at different depths
in different snapshots. Therefore, RF-Capture needs to compen-
sate for differences in depth before it can combine information
across consecutive snapshots.

2. Compensation for Swaying: As the person walks, his body nat-
urally sways. To combine information across consecutive snap-
shots, RF-Capture has to compensate for this swaying and re-
align the 3D voxels across snapshots.

3. Body Part Segmentation: Recall that each of the 3D snapshots
reveals a small number of body parts. In the next step, RF-
Capture segments each snapshot to extract the body parts visible
in it and label them (e.g., head, chest, left arm, left hand, etc.).

4. Skeletal Stitching: In the final step, RF-Capture uses a simple
model of the human skeleton to combine the detected body parts
across a few consecutive snapshots and capture the human figure.

In what follows, we describe each of these steps in detail. To make
the exposition clearer, we describe these steps by applying them to
the output of an experiment collected with RF-Capture. In this ex-
periment, the RF-Capture sensor is behind a wall. We ask a user
to walk toward the RF-Capture device starting from a distance of
about 3 m from the sensor. The antennas of RF-Capture are po-
sitioned at 2 m above the ground, so that reflections from humans
arrive along upward directions.

6.1 Compensating for Depth

When imaging with an antenna array, an object looks more blurry
as it gets farther away from the array. This is because the beam
of an antenna array has the shape of a cone, and hence is wider at
larger distances. Since our 3D snapshots are taken as the subject
walks towards the array, the subject is at different depths in differ-
ent snapshots, and hence experiences different levels of blurriness
across snapshots. Thus, before we can combine a subject’s reflec-
tions across RF snapshots, we need to compensate for his change
in depth.

To do so, we first need to know the subject’s depth in each snapshot.
This is easy since our snapshots are three-dimensional by construc-
tion –i.e., we know the depth of each voxel that reflects power. Of
course, the human body is not flat and hence different body parts
exhibit differences in their depth. However, these differences are
relatively small. Thus, for our purpose, we take the median depth
of the RF reflections in each 3D snapshot, and consider it as the
person’s depth in that snapshot.

Next, we compensate for depth-related distortion by deconvolving
the power in each snapshot with the point spread function caused
by the antenna-array beam at that depth. The point spread function
is computed directly from the array equation, Eq. 5, and the decon-
volution is done using the Lucy-Richardson method [Lucy 1974].

Fig. 8 illustrates this process. The top row shows different RF snap-
shots as the person walks towards the antenna array. The snapshots

are plotted by slicing the 3D snapshot at the median depth for the
reflected signals, and showing the power as a heat map, where red
refers to high reflected power and dark blue refers to no reflection.
It is clear from this row that reflected bodies look wider and more
blurry at larger depths. The second row shows the same snapshots
after compensating for depth distortion. These snapshots are less
blurry and more focused on the actual reflection points.

6.2 Compensating for Sway
Next, RF-Capture compensates for the user’s sway as he walks by
using the reflection from his chest as a pivot. Specifically, because
the human chest is the largest convex reflector in the human body,
it is expected to be the dominant reflector across the various snap-
shots, enabling us to identify it and use it as a pivot to center the
snapshots. From an RF perspective, the human chest is said to have
the largest radar cross section [Dogaru et al. 2007]. Indeed, the
heatmaps in Fig. 8(b) show a dominant reflection (dark red) around
the height of the subject’s chest (z = 1.4m).

To align the snapshots, we first determine the dominant reflection
point in each snapshot. In most snapshots, this would correspond to
the human chest. We then perform robust regression on the heights
of these maxima across snapshots, and reject the outliers.2 This al-
lows us to detect snapshots in which the chest is not the most dom-
inant reflection point and prevent them from affecting our estimate
of the chest location. Once we have identified the chest location in
each snapshot, we compensate for minor sways of the human body
by aligning the points corresponding to the chest across snapshots.

Note that aligning the human body across snapshots makes sense
only if the human is walking in the same direction in all of these
snapshots. Thus, RF-Capture considers the trajectory of the point
with the highest reflection power on the human body, and performs
the above alignment only for periods during which the human is
walking toward the device without turning around.

6.3 Body Part Segmentation
After identifying the human chest as a pivot and aligning the con-
secutive snapshots, we segment the areas around the chest to iden-
tify the various human body parts.

Specifically, RF-Capture defines a bounding region centered around
the subject’s chest. For example, Fig. 9(a) shows the rectangle in
orange centered around the detected subject’s chest. (This is the
second image from Fig. 8(b) after sway compensation.) Using the
chest as a pivot, RF-Capture automatically segments the remain-
der of the heatmap into 8 regions, each corresponding to a different
body part of interest. The first region constitutes the rectangle be-
low the chest, which corresponds to the user’s lower torso, while the
region above the chest corresponds to the subject’s head. The re-
gions to the left and right of the chest correspond to the arms and the
hands. Finally, the regions below the torso correspond to the sub-
jects’ legs and feet. In our implementation, we specify the width of
the torso region to 35 cm, and the height of the upper torso (chest)
to 30 cm, while the lower torso is 55 cm. These numbers work
well empirically for 15 different adult subjects with different ages,
heights, builds, and genders. We envision that exploiting more pow-
erful segmentation and pose estimation algorithms – such as those
that employ recognition or probabilistic labeling, e.g., [Mori et al.
2004; Shotton et al. 2013; Hasler et al. 2009a] – would capture
better human figures. Such techniques are left for future work.

Once RF-Capture performs this segmentation, the blobs in the

2To perform robust regression, we use MATLAB’s default parameters,
i.e., bisquare weighting function with a tuning constant of 4.685, and elim-
inate outliers whose heights are more than two standard deviations away
from the mean.
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(a) Heatmaps obtained when slicing each 3D snapshot at its estimated depth
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(b) Output after deconvolving the images with the depth-dependent point-spread function
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(c) Kinect skeletal tracking as a baseline for comparison. We rotate the Kinect output by 45◦ to visualize the angles of the limbs as the user moves.

Figure 8—RF-Capture’s heatmaps and Kinect skeletal output as a user walks toward the deployed sensors. As the user walks toward the device,
RF-Capture captures different parts of his body at different times/distances since its antennas’ perspective changes with respect to his various body parts.

heatmaps of Fig. 8(b) become more meaningful, and can be auto-
matically assigned body part labels. For example, for the heatmap
generated at 2.8m, it can now automatically detect that the blob to
the left of the chest is the right arm, and the blob below it is the right
hand. On the other hand, the heatmap at 2.2m shows the subject’s
left hand and his head, but none of his right limbs.

To gain a deeper understanding into the segmented images, we use
a Kinect sensor as a baseline. The Kinect is placed in the same
room as the moving subject, while the RF-Capture sensor is out-
side the room. Both devices face the subject. We plot in Fig. 8(c)
the output of Kinect skeletal tracking that corresponds to the RF
snapshots in Fig. 8(b). We rotate the Kinect skeletal output by 45◦

in Fig. 8(c) so that we can better visualize the angles of the various
limbs. We also perform a coordinate transformation between the
RF-Capture’s frame of reference and the Kinect frame of reference
to account for the difference in location between the two devices.
Comparing Kinect’s output with that of RF-Capture, we note the
following observations:
• RF-Capture can typically capture reflections off the human feet
across various distances. This is because the feet reflect upward in
all cases, and hence they reflect toward RF-Capture’s antennas.
• It is difficult for RF-Capture to capture reflections from the user’s
legs. This is because even as the legs move, they deflect the incident
RF signals away from the antenna array (toward the ground) rather
than reflecting them back to the array since the normal to the surface

of the legs stays almost parallel to the ground. (Note that placing
the antenna array on the ground instead would enable it to capture a
user’s legs but would make it more difficult for the array to capture
his head and chest reflections.)
• The tilt of a subject’s arm is an accurate predictor of whether or
not RF-Capture can capture its reflections. For example, in the third
snapshot of Fig. 8(c) (i.e., at 2.3m), the subject’s right arm (color-
coded in pink) is tilted upward; hence, it reflects the incident signal
back to RF-Capture’s antennas allowing it to capture the arm’s re-
flection. Indeed, this matches RF-Capture’s corresponding (third)
heatmap in Fig. 8(b). On the other hand, the subject’s left arm
(color-coded in red) is tilted upward in the fourth snapshot (i.e., at
2.2m), allowing RF-Capture to capture its reflections in the corre-
sponding heatmap.

6.4 Skeletal Stitching
After segmenting the different images into body parts, RF-Capture
stitches the various body parts together across multiple snapshots
to capture the human figure. We distinguish between two types of
body reflectors: rigid parts and deformable parts:

• Rigid Parts, i.e., head and torso: Once RF-Capture compensates
for depth and swaying, these structures do not undergo significant
deformations as the subject moves. Hence, RF-Capture sums up
each of their regions across the consecutive snapshots (i.e., sum
up their reflected power). Doing so provides us with a more com-
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Figure 10—RF-Capture’s Hardware Schematic. The setup consists of a
chirp generator connected to a 2D antenna array via a switching platform.
The figure shows the Tx chain, and two of the Rx chains.

plete capture of the user’s torso since we collect different reflection
points on its surface as the user walks. Furthermore, we found that
such a more complete capture of the torso is very helpful in identi-
fying users as we show in §9.
• Deformable parts, i.e., arms and feet: RF-Capture cannot simply
add the segments corresponding to the human limbs across snap-
shots. This is because as the human moves, his arms sway back and
forth, and adding the different snapshots together results in smear-
ing the entire image and masking the form of the hand. Instead, our
approach is to identify the highest-SNR (signal-to-noise ratio) seg-
ment for each body part, and select it for the overall human figure.
This is because a higher SNR indicates less sensitivity to noise and
hence higher reliability.

Finally, to ensure that the resultant figure is smooth, we perform
alpha blending [Szeliski 2010]. Fig. 9(b) shows the result of syn-
thesizing 25 frames together, collected over a span of 2 seconds as
the user walks towards our antenna setup. The figure shows that
by combining various snapshots across time/distance, RF-Capture
is capable of capturing a coarse skeleton of the human body.

7 Implementation
Our prototype consists of hardware and software components.

Hardware: A schematic of RF-Capture’s hardware is presented in
Fig. 10. It has the following components:
• FMCW Chirp Generator: We built an FMCW radio on a printed
circuit board (PCB) using off-the-shelf circuit components, and
based on the design in [Adib et al. 2014]. The resulting radio can
be operated from a computer via the USB port. It generates a fre-
quency chirp that repeatedly sweeps the band 5.46− 7.24 GHz ev-
ery 2.5 ms. The radio has an average power of 70µWatts, which
complies with the FCC regulations for consumer electronics in that
band [FCC 1993].

• 2D Antenna array: (shown in Fig. 1): The antenna array consists
of 16 receive antennas (horizontal section of the T) and 4 transmit
antennas (vertical section of the T); the antennas are log-periodic
with 6dBi gain. This multiple-transmit multiple-receive architec-
ture is equivalent to a 64-element antenna array. The overall array
dimension is 60 cm× 18 cm.3

• Switching Platform: We connect all four transmit antennas to
one switch, so that at any point in time, we transmit the chirp from
only one antenna. Similarly, we connect every four receive anten-
nas to one switch and one receive chain. Each receive chain is im-
plemented using a USRP software radio equipped with an LFRX
daughterboard. The sampled signals are sent over an Ethernet ca-
ble to a PC for processing. This design allows us to use a single
transmit chain and only four receive chains for the entire 2D an-
tenna array.

Software: RF-Capture’s algorithms are implemented in software
on an Ubuntu 14.04 computer with an i7 processor, 32GB of RAM,
and a Nvidia Quadro K4200 GPU. We implement the hardware
control and the initial I/O processing in the driver code of the USRP.
The coarse-to-fine algorithm in §5 is implemented using CUDA
GPU processing to generate reflection snapshots in real-time. In
comparison to C processing, the GPU implementation provides a
speedup of 36×.

Calibration: FMCW and antenna array techniques rely on very ac-
curate phase and frequency measurements. However, various hard-
ware components – including filters, wires, switches, and amplifiers
– introduce systematic phase and frequency offsets. To make sure
these offsets do not introduce errors for our system, we perform a
one-time calibration of the system where we connect each of the
Tx and Rx chains over the wire and estimate these offsets. We then
invert these offsets in software to eliminate their effect.

8 Evaluation Environment
(a) Participants: To evaluate the performance of RF-Capture we
recruited 15 participants. Our subjects are between 21–58 years old
(µ = 31.4), weigh between 53–93 kg (µ = 78.3), and are between
157–187 cm tall (µ = 175). During the experiments, the subjects
wore their daily attire, including shirts, hoodies, and jackets with
different fabrics. The experiments were conducted over a span of 5
months; the same subject had different clothes in different experi-
ments. These experiments were approved by our IRB.

(b) Experimental Environment: All experiments are performed
with the RF-Capture sensor placed behind the wall as shown in
Fig. 1. The experiments are performed in a standard office build-
ing; the interior walls are standard double dry walls supported by
metal frames. The evaluation environment contains office furni-
ture including desks, chairs, couches, and computers. The antennas
are located 2m above the ground level, ensuring that the device is
higher than the tallest subject.

(c) Baseline: We use Kinect for baseline comparison. In our ex-
periments, both Kinect and RF-Capture face the subject, but Kinect
is in line-of-sight of the subject, while the RF-Capture sensor is
behind the room’s wall. We use Kinect’s skeletal output to track
the subject, and we perform a coordinate transformation between
RF-Capture’s frame of reference and Kinect’s frame of reference.

9 Results

RF-Capture delivers two sets of functions: the ability to capture the
human figure through walls, and the ability to identify and track the

3The antenna separation is 4 cm, which is around λ. Such separation is
standard for UWB arrays since the interference region of grating lobes is
filtered out by the bandwidth resolution [Schwartz and Steinberg 1998].
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Figure 11—Body Part Identification Accuracy with Distance. The fig-
ure shows RF-Capture’s accuracy in identifying the moving body part as a
function of the user’s distance to the device.

Estimated
Left Hand Right Hand Left Leg Right Leg Head Undetected

Left Hand 91.6 0.0 5.6 0.0 2.8 0.0

A
cu

ta
l Right Hand 0.0 90.2 0.0 9.4 0.4 0.0

Left Leg 0.0 0.0 89.7 0.0 0.0 10.3

Right Leg 0.0 0.0 0.0 86.8 0.0 13.2

Head 0.0 0.0 0.0 0.0 90.5 9.5

Table 1—Confusion Matrix of Body Part Identification. The table shows
the classification accuracy of the various body parts at 5 m.

trajectory of certain body parts through walls. Below, we evaluate
both functions in detail.

9.1 Body Part Identification and Tracking

9.1.1 Body Part Identification

We first evaluate RF-Capture’s ability to detect and distinguish be-
tween body parts. We run experiments where we ask each of our
subjects to walk toward the device (as shown in Fig. 1), stop at
her chosen distance in front of it, then move one of the following
body parts: left arm, right arm, left foot, right foot, and head. The
subject can stop at any distance between 3m and 8m away from
RF-Capture. We perform 100 such experiments. Throughout these
experiments, the subjects performed different movements such as:
nodding, waving an arm, sliding a leg, or rotating a hand in place.

Classification: We would like to identify which body part the sub-
ject moved by mapping it to the segmented 3D snapshots. Hence,
in each experiment, we collect the reflection snapshots as the user
walks and process them according to the algorithms in §5 and §6
to capture the segmented body parts. Then, we focus on the snap-
shots after the user stops walking, and moves one limb while stand-
ing still. We determine the location of the body part that the user
has moved. We compare the identified body part against the user’s
reported answer for which body part she/he moved after she/he
stopped walking and was standing still.

Results: Fig. 11 plots the classification accuracy among the above
5 body parts as a function of the user’s distance to the RF-Capture
sensor. When the user is at 3 m from the antenna setup, the classifi-
cation accuracy is 99.13%. The accuracy gradually decreases with
distance, and reaches 76.48% when the user is 8 m away.

To better understand the source of the errors, we show the confu-
sion matrix in Table 1 for the case where one of our subjects stands
5 m away from RF-Capture. The table shows that most errors come
from RF-Capture being unable to detect a user’s body part motion.
This is because while the user did move his limbs, some of these
motions may have not altered the reflection surface of the limb to
cause a change detectable by the antennas. The other main source
of classification errors resulted from misclassifying an upper limb
as a lower limb, as opposed to confusing a left limb with a right

RF#Capture+
Kinect+

Figure 12—Tracking the Human Hand Through Walls. RF-Capture
tracks the subject’s palm through a wall while the Kinect tracks it in line-
of-sight.
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Figure 13—Body Part Tracking Accuracy. The figure shows the CDF of
RF-Capture’s accuracy in tracking the 3D trajectory of the subject’s hand.

limb. For example, the right leg and right hand are confused in
5.6% of the experiments, while the right hand and the left hand are
never confused. The reason is that our antenna array is wider along
the horizontal axis than the vertical axis, as can be seen in Fig. 1.
Hence, the antenna has a narrower beam (i.e., higher focusing ca-
pability) when scanning horizontally than when it scans vertically.

9.1.2 Body Part Tracking
Next, we would like to evaluate the accuracy of localizing a de-
tected body part in RF-Capture’s 3D snapshots. Recall however
that human body parts appear in a 3D snapshot only when the inci-
dent signal falls along a direction close to the normal to the surface.
To ensure that the body part of interest remains visible in the 3D
snapshots during the experiment, we focus on localizing the hu-
man palm as the user moves his/her hand in front of the device, as
in Fig. 12. In particular, the user is asked to raise his hand as in
Fig. 12, and write an English letter of his/her choice in mid-air.

Note that in each of the 3D snapshots, RF-Capture detects multiple
body parts. Hence, we only focus on reflections that change over
time and ignore static reflections from static body parts. Once we
localize the moving reflection, we attribute it to the location of the
subject’s palm and define our error as the difference between this
location and the Kinect-computed location for the subject’s hand.4

Results: We plot the CDF (cumulative distribution function) of the
3D tracking error across 100 experiments in Fig. 13. The figure
shows that the median tracking error is 2.19cm and that the 90th per-
centile error is 4.84cm. These results demonstrate that RF-Capture
can track a person’s body part with very high accuracy. To gain
further insight into these results, we show two of the letters written
by our subjects in Fig. 14. The figure shows the trajectory traced
by by RF-Capture (in blue) and Kinect (in red), as the subject wrote
the letters “S” and “U”.

9.2 Human Figure Capture and Identification
In this section, we focus on evaluating the quality of the figures
captured by RF-Capture, as well as the amount of motion required
to capture such figures.

4We perform a coordinate transformation between RF-Capture’s frame
of reference and that of Kinect to account for their different locations.
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Figure 14—Writing in the Air. The figure shows the output of RF-Capture
(in blue) and Kinect (in red) for two sample experiments were the subject
wrote the letters “S” and “U” in mid-air.
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Figure 15—Body Part Detection Accuracy. In these experiments, the user
walks in exactly two steps. The figure shows the percentage of experiments
during which RF-Capture was able to capture a particular body part in the
human figure, using only two steps of motion.

9.2.1 Amount of Motion Required for Figure Capture

We would like to understand how much walking is needed for our
figure capture. Thus, we ask users to walk towards the device, and
we divide each experiment into windows during which the subject
walks by only two steps. Our intuition is that two steps should be
largely sufficient to capture reflections off the different body parts
of interest because as a human takes two steps, both his left and
right limbs sway back and forth, providing RF-Capture with suffi-
cient perspectives to capture their reflections.

Results: Fig. 15(a) shows the results from 100 experiments per-
formed by our subjects. The x-axis denotes the body parts of in-
terest, and the y-axis shows the percentage of experiments during
which we detected each of those body parts. The figure shows that
the human torso (both the chest and lower torso) is detected in all
experiments; this matches our initial observation that the chest is a
large convex reflector that appears across all frames. The other hu-
man body parts are detected in more than 92% of the experiments.

To understand detection accuracy for finer human figures, we seg-
ment each arm into upper and lower parts and show their corre-
sponding detection accuracy in Fig. 15(b). The plot shows that the
upper arm is detected in a smaller number of experiments, which is
also expected because humans usually sway the lower segments of
their arms more than the upper segments of their arms as they walk.

9.2.2 Sample Captured Figures

Next, we would like to gain a deeper understanding of the figures
captured by RF-Capture, and how they relate to the human’s heights
and builds. Thus, we plot in Fig. 16 the figures of four of our sub-
jects as output by RF-Capture. Each of the columns corresponds to
a different subject, and each of the rows corresponds to the output
of an experiment performed on a different day. In the final row of
Fig. 16, we overlay the obtained heatmaps over the subject’s photo.
Based on these plots, we make the following observations:

• Figures of the same subject show resemblance across experi-
ments and differ from figures of a different subject. This indicates
that RF-Capture can be useful in differentiating between people
when they are occluded or behind a wall.
• RF-Capture can capture the height of a subject. Fig. 16 shows
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Figure 17—Identification Accuracy as a Function of the Number of
Users. RF-Capture uses the captured figures to identify users through classi-
fication. The accuracy decreases as the number of users we wish to classify
increases.

that subject A’s head is higher than the rest, while subjects B and
D are around the same height. In reality, subject A is 187cm tall,
while subjects B and D are 170cm and 168cm respectively.
• Depending on the subject and the experiment, the feet may ap-
pear separated or as a single blob at the bottom of the heatmap.
This is typically due to whether the subject is walking with his feet
separated or closer to each other.

9.2.3 Human Identification

We want to evaluate whether the human figures generated by RF-
Capture reveal enough information to differentiate between people
from behind a wall. Hence, we ask our subjects to walk towards
RF-Capture from behind a wall, as described in §8(b), and use RF-
Capture to synthesize their figures. We run experiments with 15
subjects. In each experiment, we ask one of the subjects to walk
toward the device from a distance of 3 m to a distance of 1 m. We
run four experiments with each subject across a span of 15 days.

Classification: We divide our experiments into a training set and a
testing set. In particular, out of each user’s four experiments, three
are used for training and one is used for testing. To obtain our
feature vectors for classification, we transform the 2D normalized
reconstructed human to a 1D-feature vector by concatenating the
rows. For dimensionality reduction, we apply PCA on the feature
vectors and retain the principal components that cover 99% of the
variance. We then use the PCA features to train an SVM model.
The SVM model is a multi-class classifier, with a cost of 10, and
a first-order polynomial kernel of γ = 1 and coefficient = 1. The
classification is performed in MATLAB on the skeleton generated
from our C++/CUDA code.

Results: Fig. 17 shows RF-Capture’s classification accuracy as a
function of the number of users it is trained on. The results show
that when RF-Capture is used to classify between only two users,
the accuracy is 98.1%. We note that this accuracy is the average ac-
curacy resulting from tests that consist of randomly choosing two of
our fifteen subjects, and repeating for different pairs. The standard
deviation of this classification across all possible pairs of subjects
is 8.1%. As the number of users we wish to classify increases, RF-
Capture’s classification accuracy decreases. In particular, looking
back at Fig. 17, we see that the accuracy decreases to 92% for clas-
sifying 10 subjects, and 88% for 15 subjects.

To gain a deeper understanding into the classification errors, we
show the confusion matrix of the 10-subjects experiments in Ta-
ble 2. Among these subjects, subject 7 corresponds to subject A in
Fig. 16. This subject has been misclassified often as subject 9 in the
table. In fact, these two subjects were the tallest among all of our
volunteers. Subject 4 is the shortest and is never misclassified as
anyone else. Generally, as one would expect, the more distinctive
one’s height and build are, the easier it is to classify him.
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(a) Subject A (b) Subject B (c) Subject C (d) Subject D
Figure 16—Human Figures Obtained with RF-Capture. The graphs show examples of the human figures generated by RF-Capture. Each column shows a
different human subject, while each row shows figures of the same subject across different experiments.

Estimated
1 2 3 4 5 6 7 8 9 10

1 99.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 96.0 0.4 1.3 0.3 0.0 0.9 0.0 0.4 0.7

3 0.0 0.0 99.9 0.0 0.0 0.1 0.0 0.0 0.0 0.0

A
cu

ta
l

4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 2.1 0.0 90.8 0.0 4.8 2.3 0.0 0.0

6 0.0 0.0 5.1 0.0 0.0 94.2 0.0 0.7 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.1 86.9 0.0 13.0 0.0

8 0.0 1.0 0.0 0.0 0.0 0.0 0.8 97.6 0.0 0.6

9 0.0 0.0 0.0 0.0 0.0 0.0 8.8 0.0 91.2 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.8 0.0 98.1

Table 2—Confusion Matrix of Human Identification. The table shows
the classification accuracy for each of our subjects.

10 Discussion
We present RF-Capture, a system that can capture the human figure
through walls, and identify users and body parts even if they are
fully occluded. However, the system exhibits some limitations:

1. It assumes that the subject starts by walking towards the device,
hence allowing RF-Capture to obtain consecutive RF snapshots
that expose his body parts. Future systems should expand this
model to a more general class of human motion and activities.

2. The current method captures the human figure by stitching con-
secutive snapshots, and hence cannot perform fine-grained full
skeletal tracking across time. Future work may consider com-
bining information across multiple RF-Capture sensors to refine
the tracking capability.

3. Our implementation adopts a simple model of the human body
for segmentation and skeletal stitching. Future work can explore
more advanced models to capture finer-grained human skeleta.

Despite these limitations, we believe that RF-Capture marks an im-
portant step towards motion capture that operates through occlu-



sions and without instrumenting the human body with any markers.
It also motivates a new form of motion capture systems that rely on,
or are augmented with, RF sensing capabilities. We envision that
as our understanding of human reflections in the context of Vision
and Graphics evolve, these capabilities would extend human pose
capture to new settings. For example, they can expand the reach
of gaming consoles, like the Xbox Kinect, or gesture recognition
sensors, like those embedded in smart TVs, to operate through ob-
structions and cover multiple rooms. They would also enable a new
form of ubiquitous sensing which can understand users’ activities,
learn their habits, and monitor/react to their needs. In addition, they
can provide more representative motion capture models in biome-
chanics, ergonomics, and character animation.
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